منابع مشابه
Complementary hierarchical clustering.
When applying hierarchical clustering algorithms to cluster patient samples from microarray data, the clustering patterns generated by most algorithms tend to be dominated by groups of highly differentially expressed genes that have closely related expression patterns. Sometimes, these genes may not be relevant to the biological process under study or their functions may already be known. The p...
متن کاملHIERARCHICAL DATA CLUSTERING MODEL FOR ANALYZING PASSENGERS’ TRIP IN HIGHWAYS
One of the most important issues in urban planning is developing sustainable public transportation. The basic condition for this purpose is analyzing current condition especially based on data. Data mining is a set of new techniques that are beyond statistical data analyzing. Clustering techniques is a subset of it that one of it’s techniques used for analyzing passengers’ trip. The result of...
متن کاملHierarchical Clustering
In this contribution I present current results on how galaxies, groups, clusters and superclusters cluster at low (z≤1) redshifts. I also discuss the measured and expected clustering evolution. In a program to study the clustering properties of small galaxy structures we have identified close pairs, triplets, quadruplets, quintuplets , etc. of galaxies in the Sloan Digital Sky Survey commission...
متن کاملDivisive Hierarchical Clustering with K-means and Agglomerative Hierarchical Clustering
To implement divisive hierarchical clustering algorithm with K-means and to apply Agglomerative Hierarchical Clustering on the resultant data in data mining where efficient and accurate result. In Hierarchical Clustering by finding the initial k centroids in a fixed manner instead of randomly choosing them. In which k centroids are chosen by dividing the one dimensional data of a particular clu...
متن کاملApproximating Hierarchical MV-sets for Hierarchical Clustering
The goal of hierarchical clustering is to construct a cluster tree, which can be viewed as the modal structure of a density. For this purpose, we use a convex optimization program that can efficiently estimate a family of hierarchical dense sets in high-dimensional distributions. We further extend existing graph-based methods to approximate the cluster tree of a distribution. By avoiding direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biostatistics
سال: 2007
ISSN: 1465-4644,1468-4357
DOI: 10.1093/biostatistics/kxm046